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Incompressible flow along a corner 

By STANLEY G. RUBIN 
Polytechnic Institute of Brooklyn, Farmingdale, New York 

(Received 13 December 1965) 

The incompressible viscous flow along a right-angle corner, formed by the inter- 
section of two semi-infinite flat plates, is considered. The effect of the three- 
dimensional geometry on the second-order ( boundary layer ’ flow away from 
the corner is determined and an interesting secondary flow is deduced. It is 
observed that this cross-flow prescribes the necessary asymptotic boundary 
conditions for the equations governing the flow inside the ‘corner layer’. A 
systematic matching scheme is specified and the corner flow problem is reformu- 
lated in terms of the ‘ corner layer-boundary layer ’ matching conditions. 

1. Introduction 
The viscous flow along one of the corners that is formed by the intersection of 

two semi-infinite perpendicular flat plates (figure 1) is typical of problems of the 
boundary-region variety. Unlike high-Reynolds-number viscous flows over 
bodies with small surface curvature, for which two-dimensional boundary-layer 
theory is generally applicable, these geometries are inherently three-dimensional. 
The coupling that is created by the mutual interaction of the boundary-layer 
motion at different points across the surface makes these configurations difficult 
to analyse. 

The corner geometry was first investigated by Carrier (1947). His solution 
involved a rather arbitrary split of the continuity equation which has been 
criticized by Kemp (1951) and others, as the cross-plane vorticity equation 
remained unsatisfied. In  turn, Dowdell (1952) attempted to estimate the error 
that was incurred, by linearizing the full boundary-layer equations about the 
Carrier solution. 

The subsequent literature contains approximate integral solutions by 
Loitsianskii & Bolshakov (1951) and Bloom & Rubin (1961) for compressible as 
well as incompressible flow, a series-expansion technique by Levy (1959) and an 
unsteady Rayleigh-type analogy by Sowerby & Cooke (1953). However, the 
basic three-dimensionality of such a configuration has not been considered. 
More recently Howarth & Stewartson (1960) and Stewartson (1961), when dis- 
cussing the viscous flow over a quarter-infinite flat plate, pointed out the funda- 
mental significance of the three-dimensional first-order potential flow when 
dealing with these geometries. 

It is the purpose of this paper to reformulate the problem of flow along a 
corner as a singular perturbation problem. The proper asymptotic boundary 
conditions for the flow in the (corner-layer’ (region IV of figure 1) are deter- 
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mined, and the velocity and pressure distributions within the three-dimensional 
boundary layers away from the corner (regions I1 and I11 of figure 1) are 
discussed. 

FIGURE 1. Corner flow geometry. 

2. Analysis 
The incompressible boundary layer in a corner can be suitably represented by 

four distinct regions, which are depicted in figure 1. Section I is denoted as the 
potential flow, since to the orders considered here, the effects of rotationality are 
zero and since the inviscid Laplace equation is applicable there. Strips I1 and I11 
are designated as the boundary layers and are distinguished by stipulating the 
plane of interest: x = 0, y > 0 or y = 0, x > 0. In  these layers the usual two- 
dimensional boundary-layer equations apply to first-order, with three-dimen- 
sional effects, a result of the geometry and subsequent first-order potential flow, 
appearing in the higher-order equations. 

This concept, which was first expressed by Howarth & Stewartson? (1960) and 
Stewartson (1961) prescribes a precise matching scheme in order to completely 
specify the boundary-layer motion to any desired order. More significant is the 
conclusion that the flow in region IV, which is termed the ‘corner layer ’, can only 
be evaluated by this systematic matching procedure. The equations that govern 
the flow in the different sections are coupled in the typical boundary-layer sense, 
by virtue of the boundary conditions; e.g. it is necessary to require that asympto- 
tically the contiguous layers must merge smoothly. 

The resulting matching problem is of the following form: 
(i) From the known zeroth-order potential flow it is possible to evaluate the 

first-order boundary-layer solution. This is the Blasius solution for the flat 
surfaces considered here. 

t See footnote t on page 11. 



Incompressible flow along a corner 99 

(ii) The first-order potential flow is determined by considering Laplace’s 
equation in the corner region bounded by the planes y = 0,  z > 0 and z = 0, 
y > 0. It is at this juncture that the three-dimensional geometry or mutual inter- 
action first appears as a factor in the problem. As a result of this interaction, a 
cross-flow component of velocity is induced and it is of the same order as the 
normal velocity issuing from the boundary layer; e.g. 

lim w(x, y, z )  = O(v in the boundary layer). 
Y+O, z>o 

(iii) This cross-flow induces a second-order boundary-layer motion that is not 
present in ordinary two-dimensional theory. At any finite distance from the line 
of intersection the boundary layer is three-dimensional and only asymptotically 
becomes two-dimensional at very large distances along the wall. 

This entire concept is fundamental to any three-dimensional boundary -layer 
problem of the boundary-region variety. 

In  order that the solutions in the various regions be valid at  the leading edge 
(x = 0) an additional layer represented by some characteristic dimension would 
have to be defined there. Since the evaluation is omitted, all solutions are valid 
only at distances x > xo > 0,  where xo is unspecified, although it is expected to 
be rather small. 

3. First-order boundary layer 
In  order to distinguish between the several regions the following convention 

is prescribed. Potential-flow variables are denoted by upper-case letters, 
boundary-layer quantities by lower-case letters, and corner-layer properties by 
asterisks. 

The complete non-dimensionalized Navier-Stokes equations, for an arbitrary 
region, are of the form 

and the equation of mass continuity is 

(q.v)4+oj3 = (l/Re)Tzq, (1) 

v.q = 0. ( 2 )  
- 

All velocities have been non-dimensionalized with respect to the known zeroth- 
order potential velocity U ,  all lengths with respect to L, some characteristic 
dimension, and the pressure with twice the dynamic pressure +pU2.  

The zeroth-order potential flow (u = U ,  v = w = 0) is known to satisfy 
equations (1) and (2) exactly, as well as all the boundary conditions, save that 
u = 0 at the surface. In  order to satisfy this additional constraint the concept of 
a thin shear layer or boundary layer was proposed by Prandtl, who demonstrated 
the necessity for a layer of thickness of order Re-3. More recently the procedure 
has been formalized, by Kaplun (1954), and Van Dyke (1964) among others, with 
a systematic matching procedure. This apporoach is applicable to the present 
study and therefore the following series expansions are assumed: 

(i) Potential flow: 

u = Uo+e,U,+ ...+, v = s 1 q - ! - + 2 ~ + . . . + ,  

w = e1W1+e2W2+ ..., p = Po+€,P,+e,P,+ .... 13) 
7-2 
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(ii) Boundary layer: 

u = uo+ S,U,+ ...) 21 = 61vl+S,v,+ ..., 

w = ~,w,+Szwz+ ..., p =p0+S1p,+S,p2+ ...) 

u = u;+y,uT+ ...+, u = ylwT+y,w,*+ ..., 

(iii) Corner layer: 

(4) 

w = ylW:+yzW;+ ..., p =p:+y,p,::+y,p,*+ .... ( 5 )  

The parameters ei, Si and yi are constants chosen such that eifl <ei < 1 and 
similarly for Si and yi. In  general, they are functions of the Reynolds number. 
All flow variables in all regions are functions of the co-ordinates (x, y, z) .  

The equations governing the first-order boundary layer are obtained by placing 
series (4) into the general Navier-Stokes equations and retaining first-order 
terms in S, only, so that the additional no-slip condition neglected in the potential 
flow is satisfied. In  order to satisfy the continuity equation as well, the following 
conditions are prescribed: 

(1) cYl is set equal to Re-5. 
(2) New boundary-layer co-ordinates are defined, such that X and Z are 

unchanged, but a new co-ordinate 7 = jj Re4 is necessary to make all dimensions 
of order unity, and in this manner the thickness of the boundary layer is defined. 

The details of the analysis are omitted, as they are identical in principle to those 
for the two-dimensional analysis and can be found elsewhere (Van Dyke 1964). 
It is important to note that €or the corner flow there is no characteristic length, 
other than the distance from the corner intersection line or leading edge and 
therefore the length L,  which was introduced in a strictly formal manner, will 
cancel in any final result. For the boundary layer I1 the classical two-dimensional 
equations arc obtained to first-order: 

the appropriate boundary conditions being, Go = Gl = 0 at the surface (7 = O ) ,  
and Go + 1 as the asymptotic condition outside of the layer ( 7 + 00). Analogous 
equations are obtained in region 111, with w1 replacing El and 2 replacing 7. 

The solution of equations (6) is the well-known Blasius calculation 

u = uo = Uf’(q), 21 = €lwl = U(v/2Ux)4(rf’(r)-f(q)),  (7) 

where 7 = y( ?7/2vx)*. 
This solution exhibits a normal or outflow velocity u which is absent in the 

zeroth-order potential flow. This velocity, as well as w on the opposing surface, 
must serve as the matching condition for the next-order potential flow. Where 
the asymptotic value of 2, is the classical result, 

w+ U(v/2Ux)gp as y+oo and p - 1.21678. 
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4. Potential flow 
The equations that govern the first-order potential flow are obtained by 

retaining only those terms that are first-order in 6 ,  when the assumed expansion 
(3) is substituted into the general equations (1). The matching condition on the 
outflow velocities from the respective boundary layers in I1 and I11 forces the 
choice of Re-) for 6,. The potential flow co-ordinates remain, of course, the 
unstretched system ( x ,  y, x ) .  

The governing equations are 

( 8 )  or P,+pUUl = const., 

and V2@ = 0, 

where 0 is the velocity potential referred to velocities (c1U,, e1K, E,W,); e.g. 
a@/ax = el U,, etc. The first-order potential flow remains irrotational. 

The Laplace operator V 2  is three-dimensional, and equation (8) must be 
solved within the volume bounded by the planes y = 0, x > 0 and z = 0, y > 0. 
The necessary boundary conditions are a result of the matching conditions 

I p u au,px = - aPllax, 

i 
lim 8,v1(x, Y,Z) = lim' e,V,(x, y, z )  = /3Ii(v/2Ux)i ,  

Iim 6,wl(x,y,Z) = lim e,q(x,y,z) = /3U(v/2Ux)*. 

Y+m Y+O 
1/ fixed 1' fixed 

Z-tm 2-0 
o fixed Z fixed 

(9) 

The boundary conditions for v and w are evaluated directly on y = 0 and z = 0 
respectively, since this represents the first term in a Taylor series expansion and 
is valid to order Red,  the order of the boundary-layer thickness. 

The following boundary-value problem is posed: V2@ = 0, 

= /3V(v/2Ux)B, y = o+, x > 0 ,  z > 0;  1 (10) 
@?, = 0, y = o+, x < 0, z > 0, 

@,= 0, y > 0, x < 0,  z =  o+, 
Q2 = pU(V/2uX)*, y > 0 ,  X > 0, 2 = Of; 

with the appropriate decay at infinity. 

find that, 
The solution is found directly with the use of a suitable Green's function. We 

(1 1) - 2 7 w x ,  y,4 = AW)*  {4(x, y, z ;  L,) +I2(x, y, 2 ;  L1) + I&)),? 
lim L, + co, 

where 

1, = /oL'/om dx,  dy, x ,  * [{(x ,  - x)2 + (yo - y)2 + z2}-* + {(x ,  - x)2 + (yo + y)2 + 22}-4], 

7 I&) is a surface integral over the quarter infinite cylindrical surface y2+z2 = r2 = L;. 
Since V$ + 0 as r + co, VI,(L,) + 0 as L, --f 03 and is of no subsequent importance in the 
analysis for the velocities. 
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The first-order velocity components are 

where [ = z/x and 7 = y/x. 
Integrals of the type shown above can be easily evaluated for [ >  0 and 

q > 0 by using the complex variable and the proper contour encircling the 
branch point at t = 0. 

We find that, 
a@/& = p U (  4 2  UX)* (1 -I- &-*Re ( 1 + i[)$, (13 a )  

a@/ax = -@U(~/2Ux)4{~-'-1(1-(1+[~)~)Re (1 +i@ 

+ ?-l( 1 - (1 + q2)-$) Re (1 + iq)*), (14 a)  
a@/ay = @U(v/ZUx)*(l +q2)-4Re (1 +iq), (15a) 

where 

and similarly for Re (1 + iq). 

are quoted below for future reference. 

J2Re (1 +it$ = (1 + (1  + [2)*)* 

Since the asymptotic results will be required in the subsequent analysis, they 

(i) For small? 7 and large [ 

(ii) For 9 small? and [ small? 

The induced cross-flow, e.g. a@/& in the vicinity of the plane y = 0,  x > 0, is 
of the same order as the out-flow velocity a@/ay, and for small ij and [ they are 
identical, to order Red .  This result is interesting since it implies that, to this order, 
the effective displacement body would correspond to the simple intersection of 

f Since the potential flow ( I )  is only defined outside the region consisting of the boundary 
layers and corner layer, the smallness of fj and b is governed by this restriction. Since the 
boundary-layer thickness and corner-layer thickness (as will be demonstrated) are of the 
order Re-4, the smallness of the second term, on the right-hand side of each of the equations 
(17) ,  is established. 
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two parabolic cylinders, which exhibit a right-angle intersection in the cross- 
plane; i.e. in figure 1 the shaded region is non-existent to order R e d .  That this is 
not the case for higher-order solutions is clear from the character of the next- 
order terms in equation (17) .  

5. Second-order boundary layer 
The induced cross-flow aQ,/az (considering region I1 with symmetry arguments 

prescribing the flow in 111) leads to a second-order boundary-layer flow which is 
non-existent in the two-dimensional theory. The pertinent equations are obtained 
from the second-order terms in the Navier-Stokes expansion of series (4) : 

uo aulpz + u1 auolax + g1 a;il,/a P .+ v2auo/a P = - ajjl/az + a2ul/a 7 2 ,  (18) 

ap#L = 0, (19) 

(20) 

(21) 

zc,aw,laz + G~ awlla F = - apl/ax + a2wl/a P2, 

aul/ax + av21a 7 + aw#z = 0. 

From continuity considerations, it has been necessary to choose 8, = Re-l. 
The co-ordinate system (x, Y ,  z )  is defined in Q 3. 

The z derivative appears only in the continuity equation and therefore all 
z dependence occurs only parametrically in the unknowns ul, v2 and pl. For the 
flow near the corner layer, i.e. for small values of the physical co-ordinate z, the 
w velocity component is independent of z in a first approximation (see equa- 
tion (17)),  and therefore the second term in the expansion, which is proportional 
to c2, must be used explicitly even in the initial analysis for small values of z. 

Although VQ, has been evaluated in general, the expressions (13) are complex 
and therefore the second-order boundary-layer distributions are discussed only 
for very small or very large values of z respectively. The small x solution is needed 
prior to the corner-layer investigation since the ultimate matching conditions are 
imposed on uo, vl, and w1 as z+ 0. 

The pressure p1 is constant across the layer, and can be determined by con- 
sidering the asymptotic form of equation (18) or (20) at the outer edge of the 
boundary layer. Therefore 

Re-* apl/az = Re-8 aP,lax = - Re-h agl/ax 

Re-*pe = const. - a@/ax, 
= - a(acD/az)/ax, 

and ap,pz = - awl(%, 0, z)/ax. ( 2 2 )  

O r  

The W1 distribution is determined directly from equation ( Z O ) ,  using the 

It is found that 
asymptotic condition ( 2 2 ) .  

uo awl/az + E~ az~a P = aiVl(z, 0, q p x  + a2wl/a Pz. (23) 

The appropriate boundary conditions are 
- - 

G1=O on Y = 0, and i F , - + ~ ( ? & O , X )  as Y-tco. 
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Cuse I 

Small S: 
Re-l- zW1(x,0,z) = P ( v / 2 u x ) a { l - g ~ 2 + 0 ( ~ ) ) .  

It is assumed that 
Re-%, = P(v/2Lrx)4{Hh(7) - (f@)HL(7)). 

With Go and Gl defined in equation (7),  the final equation for Hh(7) becomes 

f m 7 )  + {f(r) H;(r)3’ = 1, 

7 = y(U/2vx)k 

where HL(0) = 0,  Hh(7)+l as q+m, 
(24) 

From equation (24), it is seen that the boundary-layer distribution for wl, 
obtained from the first term in the g expansion is identical to the second term 
L(7) for the cross-flow velocity in the ‘secondary layer’ on a quarter-infinite flat 
plate (Stewartson 1961). However, for that geometry the leading term in the 
expansion was logarithmically singular as z -+ 0. 

The solution of (24) is 

( 2 5 )  

and is depicted in figure ( 2 ) ,  along with a representation of the Blasius distribu- 
tion f ’(7). It is of interest to note that the cross-wise shear component H;(O) = - P, 
and since /3 > 0, Hg(0)  < 0. This results in an inward flow (toward the corner) 
near the surface (7 = 0) which is reversed within the boundary layer until the 
asymptotic outward flow is reached when 7 +  GO. From the pressure condition 
( 2 2 )  we see that the corner layer asymptotes into an adverse pressure gradient, 
which it apparently cannot overcome near the wa1l.t 

The governing equation for Hi(7)  is obtained simply as 

If additional terms are to  be included in the Wl(x, 0, z )  expansion then ~5~ ean be 
represented by, 

Re-h, = P(v/2Ux) i  A2n[2nHLJ?l), 

where the AZn7s are constants, obtained directly from the l(((x, 0, x )  distribution; 
e.g. A ,  = 1, A ,  = -8 ,  etc. The functions H2, satisfy equations of the following 

m 

?J= 0 

type: 

where n = 1,2,  ..., and HL,(O) = 0,  H6,(7)+ 1 as p-tm. 

H ~ ~ ~ ( 7 ) + ~ ( 7 ) H ~ n ( 7 ) + ( 4 ~ ~ + ’ ) f ’ ( ~ ) ~ 6 n ( 7 )  = 4n+131 (27) 

t This interpretation is t o  be foixnd in Pearson’s thesis (1957), although it was first sug- 

3 See Appendix 11. 
gested to  me by Professor Paul A. Libby of the University of California at La Jolla. 
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This expansion is comparable to the Blasius expansion for the flow over a 
circular cylinder, although it is greatly simplified by the linearity of thegoverning 
equation (20). Undoubtedly, other series-expansion techniques, such as the 
Gortler series (Rosenhead 1963) are applicable as well. 

FIGURE 2. Asymptotic cross-flow variation [H'(q)]  in the boundary layer, and 
comparison with the Blasius distribution [ f ' (q) ] .  

The solution for Z1 can be obtained similarly from equation (18), with the 
continuity equation providing the v2 boundary-layer distribution. If 

Re-'- zu 1 - - - P/2(v/2U+ Cf%(q), 

Re-1E2 = (pQ.2~) ( V / B U X )  {B(q) - 2 ~ ' , ( q )  - v ~ i ( ~ j ) j ,  then 

where 

Therefore, 

and Gl(0) = G;(O) = 0, G;(q) 3 1 as q 3 00. 

Additional terms in the U1 expansion for small [ can be determined in a manner 
similar to that described above for W1. The second-order shear stress (rl)%* 

(rl)zy = -pG;(O) @k$($pU2) + O ( p ) .  becomes 

Gr'Y(7) + (f(r) G;(ll))' + 2{f'(s) G;(q) -f"(s) Gl(rl)) = 3 P  - &?)'Y(v)h (28) 
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Therefore the total skin friction is 

(Cf)zu = 2rzy/pU2 = 0*664Re;~-,dG;(O) c$Re;1+0([3Re;1), 

and from the GI distribution 

(C,,,, = -PRe;lO + (8) c 2 m 4  +0(C4) ]> ,  

where G:(0) = - 7.0820, and Hl(0)  = - 8.3972.t 

Case I I  
Large C: Re-4 Wl(x, 0,z) = 0*609(v/Uz)b = E/&, 

Re-4 U(x,  0, z )  = - k/z% and 

If Re-4 vl = (I%/&) h’(q), then equation (23) becomes 

h”(7) +f(r)h“(r) = 0, 
with h‘(0) = 0, h’(v)-+l  as y - + m  

It is clear that h‘(7) = f ’(7) and therefore the cross-wise velocity decays as z: for 
2 B 1, where it exhibits a Blasius-type profile. 

The U1 distribution is obtained likewise, by choosing Re-: El = - (k/zk)g’(T). 
From continuity 

Re-l’U2 = - ( E l 4  w 2  U X ) +  Crg’(7) - g(7)}, (29) 

and therefore g”(7)  +g”(r)f(r) +g(7)ff’(7) = 0, (30) 

It is seen that %(7) = f ( 7 )  + 7f ’ (TL (31) 

and Re-$El = - 0.3045(v/Uz)*(qf’’(y) + Zf ’ (q ) ) .  (32) 

with g(0)  = g’(0) = 0, g’(y)+l as r+m. 

The second-order shear stress becomes 

( T ~ ) ~ ,  = - 0.303 U,U(XZ)-$ 

and the total skin-friction coefficient for [ B 1 is 

(Cf),, = rm/&pU2 = 0.664 Re;&- 0.606 Re;l(x/z)k+ ... + . 

(C,),, = 0.404 Re;l(x/z)-* + . , . + . 

(33) 

( 3 4 )  

It is noted that a momentum integral approach is applicable to estimate the 
skin friction a t  other points in the boundary layer and in the asymptotic case of 
[+a, it was found to give very good agreement with the exact solution, when 
the simplest profile was introduced. However, the general solution involves a 
partial differential equation for the boundary-layer-thickness parameter and 
therefore its usefulness is in question. 

Finally, from the w1 distribution, 

6. Corner layer 
The equations governing the behaviour of the motion in the corner layer are 

obtained by retaining only first-order terms in the Navier-Stokes expansion of 
series (5). For this analysis, it  is necessary to satisfy the no-slip condition on both 

t See Appendix 11. 
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surfaces y = 0 and z = 0, and a sufficient number of terms must therefore be 
retained in the first-order expansion. Since W1 and El are both of order Re-4, it  
is clear from continuity arguments as well, that 

(i) y1 = Re-); 
(ii) the corner-layer co-ordinates must be stretched such that z is unchanged, 

With these requirements, the following equations for the corner layer are 
but y = Y Re-f and z = Z Re-*. 

obtained to first-order : 

p2 IaZ + azwfla Pz + aZizflaZ2, (35) 

u; aG$laz + v; au:iaT +- W ;  au$iaZ = aZu;iaP+ a2u;laZz, 
u$av~lal~:+v:av~iaH+w~av;laZ = - ap~laK+a2v;laT2+azv;lazz, 

aq l az  + v: aa;IaF + wf aw;laZ = - a-* 
au$jaz +- avTlaB i- awTlaZ = 0, jg = const., 

apf/aF = 0,  ap:laZ = 0. I 
In slightly different forms these equations have appeared in several publica- 

tions and Carrier (1947) has solved them by assuming that a single ‘potential’ 
function satisfies the continuity equation instead of the usual two stream func- 
tions required in three-dimensional calculations. He accomplished this by split- 
ting the continuity equation and disregarding the cross-plane vorticity equation 
which remained unsatisfied. The magnitude of the error that this assumption 
imposes was not known precisely; Dowdell(l952) in his master’s thesis attempted 
to evaluate it by linearizing the equations about Carrier’s system. 

It is now possible to show that the second ‘potential ’ function is not necessarily 
small and that the boundary conditions which are necessary in order to solve the 
above system of equations depend closely on the second-order boundary-layer 
so1ution.t 

In support of the former statement, it  suffices to describe the corner-layer 
behaviour as Z-t  cc with Y fixed. The proper boundary condition on this limit is 
determined by the boundary-layer result as z -+ 0. This is 

w +pu(v /2ux )*  HL(T).$ 

w N pu(v / zUz) t f ’ (T ) .  

The asymptotic result that is obtained by assuming a single ‘potential ’ function 
is 

t It should be noted that the Carrier approach was aimed primarily at  determining the 
mainstream behaviour and may have given reasonable estimates of it, especially near the 
boundaries of the corner layer. The cross-flow velocities would not be correct. 

1 After this paper was submitted, the Editor drew attention to the existence of two Ph.D. 
theses, by Dr J. R. A. Pearson (1957) and Dr G. F. Louis (1957), presented a t  Cambridge 
University. Both were concerned with the corner-flow problem. Dr Pearson was aware of 
the necessary matching requirements for the corner-layer solution, and by considering the 
asymptotic form of the cross-plane vorticity equation, he deduced the correct asymptotic 
value for w, without a specific knowledge of the entire second-order potential flow. There- 
fore, it is concluded that this boundary condition should be correct even for the intersection 
of two quarter-infinite plates. He carried out a relaxation solution that was unsatisfactory, 
as large errors occurred in the calculation of the cross-flow velocities. The axial-velocity 
calculation was somewhat better and indicated that Carrier’s solution might even be in error 
for the mainstream velocities. Dr Louis’s thesis was unavailable. 
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Since f '(7) =k H i ( y ) ,  and in fact they are considerably different (see figure 2 ) ,  the 
single 'potential' assumption does not appear to be justified. 

With reference to the second statement, it has been shown that the asymptotic 
corner-layer conditions are all predetermined and not a consequence of the 
boundary-layer solution, as is the normal outflow in two-dimensional theory. 
These values form a complete set of necessary boundary conditions for the 
corner-layer equations. 

The final equations for the corner layer, in terms of the similarity variables 
7 and 6, are the following: 

-?$,-<a5+8,+&< = 0; 

- qaa, - @a, + 66, +&a, = a,, + a,,; 

-ulu-11"w,-YaG5$sa,+"a6 A h  A h  = -&+a +a -a$ - ?$a, - @05+ aa, +&a, = - f$+ 6 ?I, + 655; ] (36) 

771 55; 
where Ti: = $2, Re-tvf = (v /2Ux) i8 ,  Re-iw? = (v/2Ux)hi2, 

Re-lp, = ( ~ / 2 7 ? X ) f j ,  7 = IJ(U/zlJX)t, < = Z ( ~ / ~ V X ) $ .  

The appropriate boundary conditions are 

2 2 = 6 = 8 = 0  on 7 = 0  andon 5 = 0 ,  

&+f ' (r ) ,  @+,),/f'(?-)-f(T), z^o+PHA(r) as <+a, 

i z i f ' ( c ) ,  $+PHA(<), zhU+cf'({)-f(<) as r i a .  1 (37) 
In  addition, 

&,+P, Gq+O as y + a ,  &+p, 6<+0 as c-+a.-/- 
The solution of these equations (36) with the boundary conditions (37) is quite 

complex, requiring an elaborate relaxation procedure on a digital computer and 
work along these lines has already been started. 

7. Concluding remarks 
The boundary layer in a corner is typical of boundary-layer flows over bodies 

with large or infinite surface curvature. Several distinct regions are defined and 
the equations governing the various motions are coupled through the asymptotic 
boundary conditions. The solution for the three-dimensional boundary layers 
away from the corner region has been discussed to order Re-$; the cross-wise 
velocity distribution has been shown to exhibit an interesting inward flow 
pattern near the corner that is analogous to a similar motion found for the 
quarter-infinite flat plate. It has been shown that a series-expansion method 
can be used to examine the boundary-layer flow at  other points along the surface. 

The equations and appropriate boundary conditions for the flow in the corner 
layer have been determined as a result of the consistent matching with the 
boundary layers, and a numerical solution is being developed. 

t From an approximate asymptotic analysis of the corner-layer equations (36) it can be 
predicted that these conditions, as well as (37), are approached exponentially, and not 
algebraically, fast. The numerical calculations of Carrier (1947) and Pearson (1957) concur 
with this conclusion. 
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FIGURE 3. 
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The procedure should be applicable to other three-dimensional geometries, 
compressible flows and flows over curved surfaces, i.e. for pressure-gradient, 
flows. These possibilities are currently being investigated. 

This study was supported by the Air Force Office of Scientific Research under 
Grant No. AF-AFOSR-1-63. It was initiated as part of a general programme to 
study high-speed corner effects. Initial results were presented at the AGARD 
Fluid Dynamics Specialists’ Meeting a t  Naples, Italy, on 10-14 May 1965, in 
connexion with a paper entitled ‘Viscous Inviscid Interactions along a Corner ’, 
by M. H. Bloom, R. J. Cresci & S. G. Rubin. The author thanks Professor Martin 
H, Bloom for his suggestion of this problem and pertaining discussions. Professors 
R. C. Ackerberg and other colleagues also provided helpful discussions. 

Appendix I 
The asymptotic analysis of 3 5 predicts an unusual inflow near the wall (figure 

~ ( c L ) ) .  From continuity considerations in the immediate vicinity of the line of 
intersection, an outflow is anticipated and would be of the type shown in figure 
3 (a) or (b) .  With these asymptotic conditions, it is possible to speculate on the 
nature of the flow inside the ‘corner-layer’. 

Two possible cross-flow patterns, which are consistent with the above asymp- 
totic conditions, are shown in figure 3 (c) and (d). The latter depicts closed stream- 
lines when viewed in the cross-plane, and is a natural result of the opposing 
velocities in the two asymptotic limits. The former corresponds to inner condi- 
tions as shown in sketch (b).  

Some recent turbulent corner-flow experiments (Gessner & Jones 1961 ; 
Paradis 1963) show flow patterns similar to the speculation of sketch (d). While 
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these results might have been the effect of turbulent fluctuations or the experi- 
mental geometry, they are consistent with the analyses described in this paper. 

Appendix I1 
In  determining the solutions of the equations governing the second-order 

boundary layer (equations (27), (28), etc.), it has been necessary to allow only 
exponentially-decaying solutions. Discussion on this point is provided by 
Stewartson (1957), and Van Dyke (1964) among others. 

By examining the asymptotic form of equations (27), it  can be shown that if 
H i n ( y )  = 1 + e-fvZ Pzn(r), then satisfies Weber’s equation (Whitt’aker & 
Watson 1962), 

whereby the asymptotic form of Hi,(q) is described by an exponentially decaying 
solution of O(r4n e-h2) and an algebraically decaying solution of O(V-~~-I ) .  There- 
fore, in the numerical computation, as HL,(r) -+ 1 for 7 -+ 00, it is necessary to 
filter out the algebraically-decaying part. This becomes increasingly difficult as 
n becomes larger, but for n = 1 it poses no great difficulty. Curiously, for n = 0, 
the requirement that H,”(O) = -,8 identically eliminates the linear algebraic 
decay, for thenf(q)NA(V) N 7-/3. 

and 
all subsequent Gn(7) solutions. 

Similar arguments hold for Gl(r) (which allows for decay of the form 
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